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Summary-A hole in a common wall is used to provide coupling

between two resonant cavities (k= coefficient of coupling) or be-

tween two waveguides (x or b =normalized reactance or suscept-

ance) or between cavity and waveguide (~= loading power factor of

cavity).

Referring to either side of a thin common wall, the field intensity

in the center of a small hole is 1/2 what it would have been at that

location on the wall. Between two equal regions, the coupling (k, x

or fr) by magnetic or electric field is expressed as 1/4 the ratio of the

effective volume of the hole over the effective volume of each region,

By duality (Booker’s principle), the effective volume (related to the

polarizability) of an aperture in a thin wall is identified with that of

an analogous thin body in a uniform field. For a resonant cavity

loaded by coupling to a waveguide, the loadlng power factor is

0= kx; this theorem is proved by reference to an equivalent network.
Various cases of coupling by two-dimensional and three-dimen-

sional fields are formulated in terms of area or volume ratios, es-
pecially between pillbox resonators (rectangular, circular, or coaxial-

circular) and between rectangular waveguides with common side
walls or top and bottom walls. The effective area or volume of a

small hole in a thin conducting wall is given for various symmetrical

shapes, in a magnetic or electric field.

1. INTRODtTCTION

I

N IJf I CROWA1~E technology, resonant cavities or

waveguides may be coupled through a hole in a

common wall. The general principles of such cou-

pling are well known (see [3]-[5], [7], [12]).

The present purpose is the presentation of this sub-

ject in a unified manner which will emphasize the prin-

ciples and also will aid in understanding and computing

the coupling in a variety of situations. The presenta-

tion is quantitative to the extent permitted by some

simplifying assumptions.

While most of the subject matter is taken from diverse

sources in the literature, the basis for the unified pres-

entation seems to be new. This naturally leads to inter-

esting concepts and relationships that may not have

been apparent in the earlier publications. One theorem

that is particularly useful enables a simple computation

of the loading power factor of a resonant cavity by

coupling with a nonreflecting waveguide.

The field coupling or polarizability of any coupling

hole will be expressed in terms of an effective volume.

The coupled cavitities or waveguides will likewise be

evaluated in terms of an effective volume. Then it be-

comes possible to formulate, in terms of a volume ratio,

the coupling coefficient, the normalized reactance or
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susceptance, or the loading power factor, in any situa-

tion where the concept is applicable.

II. SYMBOLS

MKS rationalized units.

E = electric field intensit~- in space; voltage

gradient in resistance sheet (volts/

meter).

H= magnetic field intensity in space; current

density in resistance sheet (amperes/

meter).

1’= voltage.

l=current.

R = resistance.

G = conductance.

X = reactance.

B = susceptance.

RU, GO= wave resistance or

w-aveguide (based on

f =frequency.

A = wavelength.

A/2r = radianlength.

conductance in a

volta~ge and power).

ho= waveleng~h in free space.

h.= 2a= cutoff wavelength in rectangular

w-aveguide.

a, b, c = width, height, length of bounded space.

a = radius of circular cylinder.

a, b = outer and inner radii of coaxial cylinders.

d = 2r = width of aperture; diameter of circle.

r== radius of circle.

Y], r~ = major and minor radii of ellipse (disc in

uniform field or hole in thin wall).

7rYs = area of circle.

+rr3 = volume of sphere.

t = thickness of wall.

1= length of equivalent dipole (for defining

polarizability).

.4 = area.

.4,, .1., .4 ~ = (see ~~ below).

I’=volume.

1’., I’m = effective volume of electric or magnetic

energy in a resonant cavity or wave-

guide, referred to the fielci intensity at a

point on one wall where coupling hole is

to be located.

V,= effective volume or polarizability of thin

body in uniform field, or effective volume

of hole in thin wall (see Note).

231



232 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

~ ~’,= polarizability of hole in thin wall (Bethe)

(see lVote)o

k = coefficient of coupling= ratio of mutual

impedance over mean self-impedance of

two circuits coupled together, or analo-

gous ratio for two field regions (especially

resonators).

x = X/RO = normalized reactance in wave-

guide.

b = B/GO= normalized susceptance in wave-

guide.

~ = l/Q= power factor of resonator (by

coupling to waveguide).

k = ~1 – (rJrJ2 = eccentricity of focii in

ellipse.

F(k), E(k) = complete elliptic integrals of first and

second kinds.

c=2.72=exp l;lne=l.

j = ~– 1 = quadrature operator.

sub-e = electric field.

sub-m = magnetic field.

sub-v = resonator.

sub-g = waveguide.

sub-c = effective (of body in field or hole in wall).

sub-c = cutoff (j or A).

SC= short-circuit (electric wall).

OC = open-circuit (magnetic wall).

Note: Electric or magnetic polarizability is here defined

with the dimensions of volume, as in an electrostatic or

electromagnetic system of units; in general, it should

include also the dimension of electricity (electric per-

mittivity) or magnetivity (magnetic permeability) of

the medium.

III. FORM OF PRESENTATION

In order to emphasize the significant properties of a

coupling hole in a wall between two bounded regions,

this presentation is limited to certain well defined situa-

tions, which are outlined in Table I. The theory is based

on the limiting case of a coupling hole that is small as

compared with the coupled regions, and as compared

with the wavelength. Therefore the theory will be valid

for small values of the ratios that will indicate the

amount of coupling. Also, the coupling effects of the

electric and magnetic fields can be separately evaluated.

The wave medium and boundaries are assumed to have

perfect properties, for example, walls of perfect conduc-

tivity.

The ratios to be evaluated will be expressed as volume

ratios or, in some cases, as area ratios. The latter will

represent the volume ratios in cases of two-dimensional

fields in three-dimensional space, or the area ratios may

apply directly to the two-dimensional fields in a resist-

ance sheet.

To this end, each held region and each coupling hole

will be evaluated in terms of its effective volume or

March

TABLE I

SCOPE OF THIS PRESENTATION

Coupling between two regions bounded by conducting walls:
Two resonant cavities;
Two waveguides;
One resonant cavity and one waveguide.

Small hole, non-resonant:
Small coupling coefficient between two cavities;
Small normalized coupling reactance or susceptauce between two

waveguides;
Small loading power factor of cavity by coupling to waveguide.

Two or three-dimensional fields:
Coupling by magnetic field parallel to wall;
Coupling by electric field perpendicular to wall.
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COUPLING HOLE Vc

Fig. l—Coupling coefficient in terms of volume ratio,

area with reference to the kind of field that is instru-

mental in effecting a certain amount of coupling.

Fig. 1 shows the principle of expressing the amount of

coupling in terms of a ratio of two values of effective

volume. Two resonant cavitities are separated by a

common wall, and are coupled by a hole in this wall. For

simplicity, the hole is so located that only one kind of

field is effective therein, e.g., the magnetic field. In a

manner to be described, with reference to this kind of

field, the effective volume of each cavity ( 1’) and the

coupling hole ( VJ will be defined and formulated. The

coefficient of coupling between the cavities (k), as

usually defined in circuit theory, is then expressed in

terms of the ratio of these volumes, as indicated:

(1)

The factor ~ is introduced by a concept based on a sim-

ple rule that will be stated.

The same principle will be applied to formulating the

normalized reactance or susceptance (x or b) which may

be effective in coupling two waveguides. Then, for the

case of a resonant cavity coupled to a waveguide, a sinl-

ple theorem will be presented for expressing the resulting

“loading power factor” (~) of the resonator as a ratio of

the values of effective volume.

While these principles have widest application to

bounded regions of a wave medium, some of the ideas

and relations can be presented most simply with refer-

ence to the two-dimensional field in a “resistance sheet. ”

Particularly, such a sheet is most easily represented on

paper, The field configuration therein is easy to conceive
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in terms of voltage gradient (volts/meter) and current

density (amperes/lneter) which are simply related by

the resistance (ohms across a sq~mr-e). ‘rhesc are reasons

why such a sheet is used in st udiw of analogous fields in

three dimensions. Here it will be used in the introduc-

tion of some concepts and in the proof of some theorems.

It is recognized that the simplicity of the isotropic

resistance sheet is available as a complete analogy, only

for those three-dimensional cases which satisfy several

conditions, In the region of interest, the medium must

be isotropic and homogeneous, the field under consider-

ation must be essentially a static field (not interacting

\vith any other field), and the boundaries and field must

be invariant in the third dimension. In this presenta-

tion, these conditions are all met with respect to the

coupling field in the region of a slnall two-dimensional

aperture. Furthermore, some of the principles based on

the two-dimensional field are applicable to the three-

dimensional field with corresponding restrictions.

Ii’. PRINCIPLES OF APERTURE COUPLING

IN T\VO-DIMENSIONAL FIELDS

Several principles or rules are helpful in understand-

ing the behavior of coupling holes and in expressing the

amount of coupling. These will be presented here with

reference to the two-dimensional fields in bounded areas

or resistance sheet.

Fig. 2 illustrates the principle of duality. Each of two

bounded regions is a rectangle of resistance sheet with

conducting boundaries on two opposite edges and in-

sulating boundaries on the other two edges. The two

rectangles have a common edge, analogous to a shield-

ing wall, and they are coupled by being joined over a

small fraction of this edge, analogous to an aperture in

the wall.

In Fig. 2(a), there is an insulating common wall, and

the current (1) in the sheet is nominally parallel to the

wall. The voltage (V) is applied between the two con-

ducting walls. If one rectangle is excited as shown, there

is some coupling through the aperture to the other rec-

tangle. On the other hand, in Fig. 2(b), there is a con-

ducting common wall, and the current in the sheet is

nominally perpendicular to the wall.

These two cases are said to be related by “duality.”

This term denotes that one of the two orthogonal field

patterns changes from potential contours to flux con-

tours, and the other field pattern vice versa. Likewise,

the conducting boundaries change to insulating bound-

aries, and vice versa. In the resistance sheet, voltage

and current are interchanged.

If we take current to be analogous to flux, Fig. 2(a)

shows the flux nominally parallel to the common wall,

and Fig. 2(b) perpendicular. There are indicated, for

each relationship, the analogous cases of electric-field

coupling and magnetic-field coupling. Of the resulting

four cases, only two are of particular interest for a wave

medium, the two requiring a conducting wall, because

such a wall is the kind that can be realized as a shield

(a)

(b)

rSHIELDING WALL

,Ja!f5.
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WALL

LJ__l-+V

Flux (I) parallel to ~va[l:
Electric couphng through apert urc in ins~lhting wall (shown);
hIagneti~ coupling thl-ollgh aperture in [OIILIUC ti]lg w,ill
(Cumlog).

f~+l-
V 0

Flux (I) perpendicok to wall:
Electric coupling throu~h aperture in conducting wall
(shown); - -
NIagnetic coupling through apert[lre iIl illsulatinz wall
(analog).

Fig. 2—.\perture coupliog between t~vo rert angles of
resistance sheet; duality.

for both electric and magnetic fields. (.A {conducting wall

is a shield against an high-frequency magnetic field, if

the “skin-depth” is a small fraction of this thickness.)

On the other hand, the hypothetical insulating wall is

not easily realizable for a wave medium, because the

wall would be required to have much smaller electricity

(permittivity) and much greater magnet ivity (perme-

ability), both of which are not generall> found in avail-

able materials.

In Fig, 2, the shapes shown have symlnett-y about the

indicated centerlines. In Fig. 2(a), the centerline is at

zero potential, so it may be the location c,f a conducting

boundary for enabling one half of the sheet to have the

same field configuration. In Fig. 2 (b), the centerline is

crossed by no current, so it may be the location of an

insulating boundary.

Fig. 3 shows qualitatively the orthogonal field con-

tours in a pair of equal rectangles with aperture cou-

pling. One set of contours is shown above the centerline

and the other set below the centerline. The exciting

voltage or current is applied across the left-hand rec-

tangle, which therefore has its flux nc,minally parallel

or perpendicular to the common wall. The rig-ht-hand

rectangle is excited by the coupling through the aper-

ture in this wall.

For the shape illustrated in Fig. 3, the coupling coeffi-

cient (k) happens to be about n-,i64 or 0.049; the cor-

responding contour is marked for emphasis. Either the

voltage or the current is coupled in this ratio, since the

two rectangles are equal.

There is a simple “rule of one half” that will play an

essential role in this presentation. This rule, which has
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ANALOGOUS TO:

ELECTRIG FLUX OR

MAGNETIC POTENTIAL
I

k
F

I ELECTRIC POTENTIAL ko k o

OR MAGNETIC FLUX

Fig. 3—Field contours for aperture coupling between two rectangles.

m+1 I 1+1

(a) Symmetric,

RULE OF

ONE-HALF

(b) One side, average of (a) and (c)

El+1 I o
t

-1

(c) A symmetric.

Fig 4—Rule of one-half field intensity in center of a small

aperture in a thin wall.

been recognized in various physical situations, will be

stated and proved with reference to Fig. 4. It applies

strictly to a symmetrical small aperture in a plane thin

wall of perfect shielding. For present purposes, the aper-

ture is symmetrical with respect to two mutually per-

pendicular axes, at least one of which is perpendicular

to the field direction. The aperture is much smaller

than its distance to the nearest boundary other than

the wall in which it is located. The rule is valid alike

for two- or three-dimensional fields.

Fig. 4 shows two regions coupled through an aperture

in a common shielding wall, in accordance with the

stated ~onditions. The wall is taken to have such proper-

ties that it is invisible to a parallel field, as exemplified

by an insulating slit in a resistance sheet. In the left-

hand region, the field intensity is +1, except for the

vicinity of the aperture. In the right-hand region, the

k
z

o

field intensity is respectively +1, O, – 1, the intermedi-

ate case being the average of the two extreme cases. IrI

one extreme case, Fig. 4(a), the common wall is invisible,

so the fielci intensity in the aperture is +1. In the other

extreme calse, Fig. 4(c), the fields cancel out in the center

of the aperture. The intermediate case, Fig. 4(b), is

simply the average of the other two cases, so the field

intensity is ~ in the center of the aperture. Therefore the

field intensity in the region on either side of the aperture

is represented by ~ of this field intensity in the center

of the aperture, This is here designated as the “rule of

one half. ”

In Fig. 4, the field direction is parallel to the shielding

wall, and the wall is such as to be invisible to a uniform

field of this kind and direction. This is true of a resist-

ance sheet with an insulating wall and with current in

the indicated directions. However, an analogous proof

is applicable to any field component that is parallel or

perpendicular to a shielding wall of any kind. For the

usual conducting wall, the cases of most interest are the

parallel ma,gnetic field or the perpendicular electric field,

as outlinedl in Fig. 2.

The classic derivation by Bethe (see [4], [5]) is ex-

pressed in terms of the “polarizability” of an aperture,

for evaluating the coupling from one side to the other.

Taking the resistance sheet as a region of two-dimen-

sional field, this concept will be presented with reference

to Fig. 5.

The resistance sheet is divided by an insulating slit

representing a thin shielding wall in which there is an

aperture of small width (d). Referring to Fig. 5(a), the

exciting current density on the left-hand side is parallel

to the wall and has a certain value (27). This value is

reduced by the ‘frule of one half” in the center of the

aperture (~lZ). Some of the field lines loop through the

aperture into the right-hand side. On that side, far

from the aperture, the field is the same as that of a small

current dipole located at the center of the aperture, as

indicated in Fig. 5(c). This equivalent dipole has a cer-

tain moment (11).

In accordance with previous uses of the term, Bethe
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()dipole moment = 11 = H ~ d’
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16

effective area = A. = ~dz = circle

Fig. 5—Equivalent dipole moment of coupling through an aperture,
as a basis for defining its polarizability.

implicitly defined the “polarizability” of an aperture

as the quotient of the equivalent dipole moment over

the incident field intensity. in his use of electrostatic

and electromagnetic units, this quotient appeared to

have simply the dimensions of volume. In an integrated

electromagnetic system of units (exemplified by the

mks system), this quotient would include also the

relevant property of the medium (electricity or mag-

netivity). Here, in order to retain the dimensional sim-

plicity, we redefine polarizability as the quotient of the

equivalent dipole moment over the flux density of the

field. Then it has the dimensions of area or volume in a

two- or three-dimensional field. Here the polarizability

will be related to the ‘ineffective” area or volume of an

aperture.

In the resistance sheet, as shown in Fig, 5, the polar-

izability is formulated as the quotient of the equivalent

dipole moment (11) over the current density (H), to

give the dimensions of area. For a conducting wall in a

wave medium, this is closely analogous to the coupling

through a long slot of constant width (d) excited by a

transverse magnetic field. By duality, it is analogous to

the coupling through the same slot excited by an electric

fieid perpendicular to the wall. These cases both give

the same area of polarizability, with respect to a two-

dimensional field.

Referring further to Fig. 5, the equivalent dipole

moment and the polarizability are formulated from

Bethe’s derivation for the two-dimensional magnetic

field across a long slot in a conducting wall. Here we

note that the polarizability is ~ the area of a circle in-

scribed in the aperture (.4 .). By the “rule of one half, ”

the center of the aperture is subject to ~ the field inten-

sity on either side, so we may say that the ‘(effective

area” for interaction would be subject to (*)2 or ~ the

product of the field intensities. On this basis, the polar-

izability becomes equal to ~ the effective area. In this

case, the effective area (A,) is simply the inscribed cir-

cle, as indicated in Fig. 5(b). This concept is in accord

with one’s intuitive notions of the interaction in the

aperture region.

The concept of polarizability was originated to evalu-

ate the effect of a body introduced into a uniform field,

such as a molecule in a dielectric or a loading conductor

in an artificial dielectric. Some cases of the latter are

directly related to coupling apertures by duality and

Booker’s principle (see [6], [10], [14]). Specifically, a

thin body in a uniform field is analogou~ to an aperture

in a thin wall, under certain conditions.

Fig. 6 shows qualitatively the two-dimensional field

contours of the same region with opposite boundaries on

the vertical center line. These may be regarded as a re-

sistance sheet or a two-dimensional crews section of a

three-dimensional region. The terminology will be de-

scriptive of the latter.

Fig. 6(a) shows a thin conducting strip in a uniform

field, either an electric field parallel to the plane of the

strip or a magnetic field perpendicular, these being re-

lated by duality. Fig. 6(b) shows a slot of the same width

in a thin conducting wall, with either a. magnetic field

parallel to the wall or an electric field perpendicular,

these also being related by duality. In Fig. 6(a), the

field is so oriented that there is zero fie Id in the center

of the strip. In Fig. 6(b), this result is obtained by op-

posite field directions on the opposite sides of the wall.

Then the field configurations acquire the same shape.

This relationship between Figs. 6(a) and 6(b) is a fur-

ther application of duality, but especially as presented

by Booker in his classical analogy between a conducting

strip and a slot in a conducting sheet (see [6]).

By successive steps, there will be established a quan-

titative relation between a thin body in a uniform field

and an aperture in a thin wall. In particular, they will

be shown to have the same effective area or volume, in

the terms of this presentation.

Fig. 7 shows a basis for evaluating the effective area

(or volume) of a thin body in a uniform field. The case

shown is based on Fig. 6(a), the cross section of a thin
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(a) Insulating wall, conducting strip: Parallel electric field or Per-
pendicular magnetic field.

(b) Conducting wall! insulating slot: Parallel magnetic field or Per-
pendicular electrlc field.

Fig, 6—Field contours of a thin body in a uniform field, and the
analogous coupling in a thin wall; duality and Booker’s principle.

-~-----L===}+Ac

CONOIJCTING STRIP

(CROSS- SECTION )

CONDUCTING OISC: V, = # sphere

Fig. 7—Evaluation of effective area (or volume) of
a thin body in a uniform field.

conducting strip in an electric field. At any distance

from the strip, the perturbation from the uniform field

appears as a spreading of the potential contours. Taking

any pair of contours at the same distance from the strip,

the amount of spreading may be measured by the incre-

ment of the cross-sectional area included between these

contours. As this area is evaluated further from the

strip, it approaches a limiting value (.4,) which is de-

fined as the “effective area. ” In this case, it is found to

be equal to the circle circumscribed on the width of the

strip, as indicated (see [IT], [21 ]).

If instead we take a thin circular disk in Fig. 7, its

‘ineffective volume” ( l’,) on the same basis is 4/T times

the circumscribed sphere (see [4], [5], [17 ], [2 I ]).

From Figs. 5 and 7 for two-dimensional fields, we are

prepared to compare an aperture in a thin wall with the

analogous thin body in a uniform field. We note that

they have the same effective area, as here defined. A

similar conclusion may be reached from a consideration

of the knclwn formulas for three-dimensional fields, giv-

ing the same effective volume for the aperture in a thin

wall and the analogous thin body in a uniform field. In

any case, this like evaluation is enabled by the concept

of applying the “rule of one half” to the fields on both

sides of the aperture, and thereby introducing the fac-

tor * in (1).

Referring to Fig. 7, the significance of the effective

volume ( Tr.) may be exemplified by the effect of a small

thin conducting disk introduced into the region of uni-

form elect ric field in an idealized parallel-plate capaci-

tor. If this region has a certain volume ( 1’), the relative

increment of capacitance is

AC V.

7=7”
(2)

In this case, the polarizability, as defined herein, is equaI

to the effective volume.

While the relations stated above are all based on der-

ivations found in the literature, there is one proof that

will be given as a link between the effective volume of a

thin body and that of an aperture in a thin wall. This

proof will be based on circuit theory with the aid of the

bisection theorem (see [1], [2 ]).

Fig, 8 illustrates this proof relating to aperture cou-

pling. It is intended to shed further light on the concept

of effective area (or volume). It is based on a symmetric

pair of rectangles of resistance sheet and the equivalent

resistance network, as shown in Fig. 8(a). The rectangles

have in common an insulating wall, part of which is re-

moved to leave the two rectangles in contact over a

width of aperture. The upper and lower conducting walls

of each rectangle form one pair of terminals of the net-

work. Each rectangle presents at its pair of terminals a

resistance (R) if the other pair is left unconnected. The

aperture provides an apparent coupling resistance (kR)

as indicated in the equivalent network. The aperture is

assumed so small that the coupling coefficient is much

less than unity (k<<l).

Fig. 8 (b) shows two other network representations,

one of these being bisected for further analysis. The

objective is to formulate the coupling coefficient in

terms of the dimensions of the rectangles and their

coupling aperture.

Fig. 8(c) shows one half of the network with open

circuit (OC) at the bisection terminals. This corresponds

to one rectangle with the insulating wall completed so

there is no current diverted into the other rectangle.

Fig. 8(d) shows the same except with short circuit (SC)

at the bisection terminals. This corresponds to one rec-

tangle with a conducting wall substituted for the aper-

ture.

Since the aperture does not have terminals in the

literal sense, a rigorous equivalence in Figs. 8(c) and (d)

requires the network concept of symmetric and asym-

metric ~imodes, >’ as indicated beside the rectangle aper-

tures. These concepts are based on simultaneous excita-
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efficiency = ~kz (approx.) = 0.00060 = – 32,2 db

Fig, 8—Equivalent-network deri~-ation of the coupling coellicient
between two rectangles, in terms of the effective area of the cou-
pling aperture.

tion of both sides of the symmetric network, in the same

or opposite polarities. Such a consideration establishes

the equivalence of an open circuit or a short circuit and,

respectively, an insulating or a conducting wall at the

coupling aperture,

Referring to the change frolm Fig. 8(c) to (d), we see

that the effect of the aperture appears in the form of a

conducting body introduced into an otherwise uniform

field, as discussed with reference to Figs. 5–7. In Fig.

8(d), the rectangle area (A = d) includes only half the

effective area of the conducting body (~.1, = (m/8)d2).

Comparing the OC and SC conditions, the relative

change of resistance in the network (2k) is equal to that

in the rectangle (*.4 ./.4) as indicated. This equality

establishes the ~ factor previously introduced.

This example behaves as a resistive attenuator. Its

behavior may be expressed in terms of the maximum

efficiency of coupling between generator and load, which

is

( k

)

2

efficiency = ~k’<<lm (3)
l+~l–kz ‘4

For the shape shown, the computed coupling and

efficiency are indicated, corresponding to an attenuation

of 32.2 db.

V. ~’ARIOUS SHAPES OF COUPLING H 01.ES

‘f ’he preceding discussion has been directed mainly to

examples of two-dimensional fields, in which the aper-

ture has only one dimension (width) and no option as to

shape. In three-dimensional fields, there are several

shapes of coupling hole that are interes tin:g in theory or

practice.

Fig. 9 shows several shapes of coupling holes, with

their relative values of effective volume ( l’.,,) for mag-

netic field parallel to the major axis. The rellative values

are referred to unity for the simplest case of a circle,

and are based on equal values of the major diameter

(d= 2~J. The shapes are self-explanatory, being made

of straight lines and circular arcs except for the ellipse.

Only the ellipse (of \vhich the circle is a special case) can

easily be computed. All have been described and evalu-

ated theoretically or experimentally by Cohn (see [14 ]–

[16], [21 ]). The general properties of these shapes are

familiar and need no comment.

The ellipse offers a family of cases that exemplify a

range of shapes, of which some extreme cases are espe-

cially interesting and significant. They are unusual in

their simplicity of mathematical formulation. Table II

gives the effective volume (V.) as defined here for an

elliptic disc or hole with respect to any of the three field

directions of interest. In addition to the general formula

in terms of complete elliptic integrals, the extreme cases

of a circle and a narrow ellipse are formuklted in terms

of more elementary functions. In each case, the coeffi-

cient in parentheses will be recognized as the volume of

a sphere or spheroid circumscribed on the ellipse.

Referring to Table II, there are several features

worthy of note. For the narrow ellipse, much the

greater effective volume is presented to the longitudinal

magnetic field. For the transverse mag, netic and the

perpendicular electric fields, the narrow ellipse approxi-

mates a long strip or slot with a two-dimensional field, so

these two cases are related by duality ancl lhence present

the same effective volume. b-or the circle, there is no

distinction between the two magnetic field orientations.

Here we note the ratio of 2:1 between magnetic and

electric polarizabilities of a circular hole which was dis-

covered and put to use by Bethe (see [4], [5]).

Most of the present discussion applies quantitatively

to the limiting case of a hole in a thin wall. In practice,

the wall usually has a thickness sufficient to reduce the

coupling by an appreciable amount, In principle, this

reduction is related to the field attenuaticm in a. cylindri-

cal shield that is too small for wave propagation (see

[8], [9]). Fig. 10 gives some relations that are helpful

in estimating this effect. Taking a cylinder having a

cross section like the hole in size and s’hape, the ex-

ponential rate of attenuation along the cylinder can be

evaluated. In the short cylinder through the thick wall,

this rate gives an upper limit on the attenuation of the

coupling by the thickness of the wall. The rate is indi-

cated for several simple cases of two- and three-di men-

sional fields.
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TABLE II

FORMULAS FOR THE EFFECTIVE VOLUME OF AN ELLIPTIC DISC OR HOLE
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Fig. 10—Aperture in thick wall.
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VI. COUPLING BETWEEN RIZSONANT CAVITIES

Having developed the concept and significance of the

effective area or volume of a coupling hole, its simplest

and most interesting application is found in the coupling

between two resonant cavities, as introduced in Fig. 1.

Here the two cavities are taken to be alike, and bounded

by walls of perfect conductivity with resulting perfect

shielding. Quantitative evaluation will be based on the

assumption of a small coupling hole in a thin common

wall.

The simplest resonant cavity for this purpose is the

‘{square pillbox” shown in Fig. 11 (next page). This

designation implies that the third dimension (c= height,

not shown) may be much smaller than the diameter (a),

In any case, the field is taken to be two dimensional as

in the rectangular TM-110 mode of resonance. Incident-

ally, this requires that the coupling hole have the same

width (d) over the full height of the cavity. The two

cavities with a common side wall for the coupling hole

are coupled by magnetic field in the hole.

As one step, it is necessary to evaluate the effective

area or volume of the resonant cavity. In general terms,

the electric field is greatest in the center of the square

and the magnetic field is greatest in the middle of each

side wall. The hole is located in the middle of one side

wall, so the magnetic field intensity (~) in this location

(but before the hole is opened) is taken as a reference.

The effective area of the resonant cavity is defined as

the area (.4~) which would contain the same amount of

magnetic energy if filled with uniform intensity equal to

the reference value (H). In the square cavity, this is ~

the area, as indicated. It is interesting to designate, as

shown in dotted lines, the parts of the area that contain

most of the magnetic energy. If we apply the same prin-

ciple to the electric field, taking the maximum value

(E) as a reference, its effective area (A.) is ~ of the

square, this energy being contained mostly in the center

area, shown in dotted lines. The areas in the corners

contain little energy of either kind.

In k“ig. 11, the hole for magnetic coupling has an

effective area (.4 V,,) equal to the inscribed circle, as

previously shown in Figs. 5 and 7. The coupling coeffi-

cient (km) is then simply formulated as ~ the ratio of

the effective area of the hole over that of the cavity. This

follows the reasoning of Fig. 8 and the preceding dis-

cussions.

In all evaluations in this paper, the assumption of a

small hole limits the validity to a coupling coefficient

much less than unity. In Fig. 11, for example, a close

approximation would require a hole less than ~ the

diameter (d/a <~, k., <r/128 = 0.025); a rough approxi-

mation would be obtained for a hole less than ~ the

diameter (d/a <~, kr, <T/32= 0.10). The residual rela-

tive error is of the order of the coupling coefficient (km).

Fig. 12 shows the magnetic coupling on the same basis

for two resonant cavities of the “rectangular-pillbox”

type. Here the formulas are complicated by the refer-

ence intensity (H) at two walls (b) being different from

the intensity at the other two walls (a).

Fig. 13 shows the magnetic coupling for two resonant

cavities of the “circular-pillbox” type. Here there is no

‘(common” wall in the literal sense, but thi:s is approxi-

mated in the vicinity of a small hole. The circular TM-

010 mode of resonance is utilized. Here it is remarkable

that the effective area of magnetic energy is equal to the

area of the cavity; the small density near the center is

compensated by the excess of density in all intermediate

region just inside the rim. The effective area of the hole

likewise being a circle, the result is an extremely simple

formula for the coupling coefficient.

Fig. 14 shows the magnetic coupling for two resonant

cavitities of the ‘fcoaxial-circular-pillbox” type. For

evaluation, this is assumed much smaller than the wave-

length, so the magnetic and electric fields are substan-

tially separated in the outer and inner regions, desig-

nated as inductance (L) and capacitance (C).

In the related case of a pair of adjacent long coaxial

lines coupled by a longitudinal slot of length much

greater than its width, we can likewise express the cou-

pling coefficient that is effective over the length of the

slot. By duality, it has the same value for lboth magnetic

and electric fields (kn = k,), and is given by the formula

in Fig. 14. In this case, there is no assumption of

resonance, nor is it ruled out.

Going to three-dimensional fields, the simplest case is

the coupling of two cubic resonant cavities by a, circular

hole, as shown in Fig. 15. The resonance is in the pill-

box mode, rectangular TM-1 10, which has a two-dimen-

sional field. However, the coupling hole is circular, which

departs from the two-dimensional field.

Fig. 15(a) is an extension of Fig. 11, the magnetic-

coupling hole being changed to a circle. lJ:sing effective

volume instead of area for both the cavity and the hole

( Vn, 17m,C),the coupling coefficient (km) is simply formu-

lated.

Fig. 15 (b) has the cavity field reoriented for electric

coupling, the hole being located at the maxim urn elec-

tric field intensity E. From Fig. 11 and Table II, it is

found that the effective volume of the cavity and that

of the hole are both reduced to one half, so the coupling

coefficient remains the same. This is a remarkable co-

incidence, which might be useful in the design of such

cavities for simultaneous utilization of different orthog-

onal modes at the same frequency (or nearby frequen-

cies).

Fig. 16 is changed from Fig. 15(a) in the same manner

as Fig. 12 from Fig. 11; two rectangular resonant cavi-

ties are coupled by a circular hole.

These examples of coupling holes between. various

types of resonant cavitities have been chosen to illus-

trate some principles and to give some formulas for

simple cases that may be approximated in practice.

They can be extended to other cases in terms of the

values of effective area or volume for any particular

cavities and coupling hole.
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SQUARE PILLBOX : TM-110

Fig. 1 l—The effective area of the stored energy in a square-pillbox
resonant cavity; the coefficient of coupling between two such
cavities.
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Fig. 12—Rectangular-pillbox resonant cavities.

CIRCULAR PILLBoX : TM. OICI

Am = ra’ = circle (a)

Am, = Trz = circle (Y)

Fig. 13—Circular-pillbox resonant cavities.
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VI 1. COUPLING BET\VEEN W7A%’EGUIDES

Two waveguides may be coupled in various ways

through a. hole in a common wall. In order to apply the

principles presented here, we must evaluate the effective

volume of the waveguide for comparison with that of

the hole. lJnlike the resonant cavity, the waveguide does

not have a limited region in which to evaluate the effec-

tive volume for this purpose. Therefore, we shall arbi-

trarily define an effective volume such that it will fit

into a certain formula.
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A simple case of coupling between two rectangular

waveguides is shown in Fig. 17 (next page). It has a

circular hole in the common end wall of the two wave-

guides. Alternatively, it may be regarded as an iris in-

serted in a continuous waveguide. The amount of inter-

coupling may be expressed in terms of the ‘(normalized

reactance” (x= X/Ro) in shunt across the waveguide.

Reactance is chosen rather than susceptance, because it

is zero for a complete shield with no hole and increases

with coupling between the two waveguides. The normal

mode in this waveguide is the rectangular TE-10 mode;

on reflection at the end wall, it develops a maximum

magnetic field (H) at the end wall midway between the

side walls (b). This value is used as the reference, be-

cause the hole is to be opened at this location.

Corresponding to (1) for the coupling coefficient be-

tween resonant cavities, it is desired to express the

normalized reactance in the same form,

1 v.
y=_.—.

4V
(4)

Here the effective volume of the wavegrride ( 1’) remains

to be defined.

In Fig. 17, the normalized reactance is known in terms

of dimensions (see [7], [12 ]), as is the effective volume

of the circular hole for magnetic coupling ( l’~.), so the

effective volume of the waveguide ( V.) can be formu-

lated as shown. It is interesting, and presumably signif-

icant, to associate this computed volume with some re-

gion in the wavegrride; this is done in dotted lines on the

diagram. The length of this region (1 /27r)h0 is recognized

as one radianlength in the waveguide.

There are some purposes to be served by evaluating

the effective volume in the waveguide. It can be ex-

pressed and remembered in simple dimensions inde-

pendent of the coupling hole, and subsequently can be

used in a ratio with any shape of coupling hole. It

varies with guide wavelength ho and hence with fre-

quency, causing a corresponding inverse variation in

the normalized reactance, as indicated in the formulas

in Fig. 17. It may be helpful in appreciating the signif-

icance of the fields in space as determining the amount

of coupling through the hole.

Fig. 18 shows the circuit representation of the two

ways in which two waveguides may be coupled by

normalized reactance (x). Fig. 18(a) shows the end-wall

coupling between two colinear waveguides, as just de-

scribed, while Fig. 18(b) shows the top-wall coupling

between two parallel waveguides. In the latter form, the

common wall is the top wall of one rectangular guide

and the bottom wall of the other. In both forms, the

normalized reactance and the effective volume have the

same values. In Fig. 18(b), the mutual reactance is

negative because the representation is made in terms of

coupling bet~veen the upper conductors of both circuits,

whereas the waveguicie coupling is between the upper

conductor of one guide and the lower conductor of the

other. The self-reactance shown in each circuit repre-

sents the increment caused by opening the hole in the

wall.

Fig. 19 shows the circuit representation of the two

ways in which two parallel waveguides may be coupled

by normalized susceptance (b). Fig. 19(a) shows side-wall

magnetic coupling while Fig. 19(b) shows top-wall elec-

tric coupling. By the usual methods, the normalized

susceptance (b~, b.) is evaluated and this enables formu-

lation of the effective volume ( V~, V.) for these con-

figurations as was done in Fig. 17.

In Fig. 19, the circuit representations indicate the

magnitude of the normalized susceptance b,y the symbol

(b). The positive prefix (j) indicates positive capacitance

or negative inductance, whereas the negative prefix ( –j)

indicates negative capacitance or positive inductance.

The self -susceptance shown in each circuit represents

the increment caused by opening the hole. It is negative

inductance (jb) in Fig. 19(a) or negative capacitance

( –jb) in Fig. 19(b). In Fig. 19(a), the coupling SUS-

ceptance is positive inductance ( — jb). In Fig. 19(b), the

coupling susceptance is negative capacitance (–- jb) be-

cause the representation is made in terms of coupling

between the upper conductors of both circuits, whereas

the waveguide coupling is between the upper conductor

of one guide and the lower conductor of the other.

Figs. 18(b) and 19(b) show magnetic and electric top-

wall coupling that would occur simultaneously in differ-

ent amounts. The ratio of these couplings would then

be significant, as determined by the relative effective

volume of the hole and waveguides with respect to these

fields.

v v,x?n m.. ()=Z; 2 = Ztil – (j-./’’)’. (5)
Z’?:z 11

In the usual operating range of the waveguides, this

ratio exceeds unity, so the magnetic coupling is domi-

nant. It is noted that these two couplings ,give a direc-

tional coupling from a wave in one guide to waves in

both directions in the other guide, in the manner that

is well known.

In further reference to Figs. 18(b) and 19(b), top-

wall coupling is generally mixed magnetic and electric

coupling, unless one kind is intentionally selected

against the other. For example, a narrow ellipse favors

coupling by longitudinal magnetic fieldl, as seen in

Table II, so a narrow slot is commonly used to sub-

ordinate electric coupling.

Among the various couplings in Figs. 18 and 19, only

one has zero slope in any part of the usual operating

frequency range. Fig. 19(b) has lninimurn susceptance

at a certain frequency (~/f, = v’~); the reason is the

tendency of this coupling to increase toward higher fre-

quency and also toward the cutoff frequency. This elec-

tric coupling alone cannot be obtained by a simple

coupling hole, but it could be obtained by a probe

through a stnall hole designed to subordinate magnetic

coupling.
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VIII. COUPLING BETWEEN RESONANT

CAVITY AND WAVEGUIDE

The evaluation of the coupling between two like cavi-

ties or waveguides is simplified by symmetry. This sym-

metry is lost in the coupling between a resonant cavity

and a waveguide. A theorem has been discovered which

enables a simple evaluation in this unsymmetric case

from a knowledge of the two symmetrical cases. This

theorem will be presented and proved with reference to

Figs. 20 and 21.

The coupling between a resonant cavity and a wave-

guide is usually expressed by the “loading power factor”

(p= I/Q) of the resonator loading by its coupling with

one end of a waveguide. The latter is assumed to have

a nonrefllecting termination at its other end.

Fig. 20 shows the circuit representation ‘of a resonator

coupled with a nonreflecting waveguide by a relatively

small value of coupling reactance. The latter may be

expressed in either of two ways. From the viewpoint of

the coefficient of coupling between two like resonators,

it is expressed in one form (kX). From the viewpoint of

the normalized reactance between two like waveguides,

it is expressed in another form (xRO). The resistance

(R) which is coupled into the resonator is then ex-

pressed in two ways, and the ratio mean of the two

expressic)ns comes out in simple form. This yields an

extremely simple expression for the loading power fac-

tor:

P = kx, (6)

The sign ificance of this relation will be described, and

the loading power factor will be evaluated in terms of

volume ratios.

Fig. 21 (a) shows a resonator of a certain effective vol-

ume ( V,) coupled with a waveguide of a certain effec-

tive volume ( VO) through a hole in the end wall, having

a certain effective volume ( VC). Each effective volume

is evaluated with reference to the same kind and orien-

tation of field in the vicinity of the hole, in the manner

here presented.

The resonator and hole of Fig, 21 (a) can be imaged to

form two like resonators coupled by the same hole, as

shown in Fig. 21 (b). This symmetric arrangement is

used for defining and evaluating a coupling coeff-

icient (k)
The waveguide and hole of Fig. 21 (a) can be imaged

to form two like waveguides coupled by the same hole,

as shown in Fig. 21 (c). This symmetric arrangement is

used for defining and evaluating a normalized react-

ance (x).

With the coupling coefficient and the normalized re-

actance so defined, their product becomes equal to the

loading power factor in Fig. 21 (a). It may be formulated

in terms of the corresponding volume ratios, as indi-

cated.

Fig. 22 shows an example of the loading power factor

by coupling between a resonant cavity and a waveguide.

The dimensions are chosen for a convenient relation be-
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Fig. 20—Theorem for the loading power factor of a resonator coupled
to a waveguide; proof by equivalent netwurk.
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Fig. 2 1—A resonant cavity coupled to a waveguide (end wall).

As drawn: b/a = 1/2; d/b = 2/3; pm = 0.0019

Fig. 22—Exampleof coupling betweena rewnant
cavity and a waveguide.

tween a square cavity and a waveguidle in order to

simplify the formula and to emphasize the more inter-

esting relations.

IX. CONCLITSION

A basis has been presented for evaluating the cou-

pling through an aperture in terms of ratios of effective

area or volume of the aperture relative tcl the adjoining

bounded regions. The measure of coupling is the cou-

pling coefficient between two resonant cavities, the nor-

malized reactance or susceptance between two wave-

guides, or the loading power factor of coupling between

a cavity and a waveguide. A simple theorem is presented

for evaluating the unsymmetric last form from the view-

point of the two symmetric forms.

In each case, there is a significant “power law” that

shows the proportionality between the index of coupling

and the diameter of the coupling hole. In the symmetric

cases, the coupling (k or x) shows area or square-law

proportionality for a two-dimensional field at the aper-

ture, and shows volume or cube-law proportionality for

a three-dimensional field at the aperture. In the unsym-

metric case, the loading power factor is proportions] to

twice as high a power, namely, (area) 2 or fourth power,

and (volume) z or sixth power.

The concepts and formulas presented here are in-

tended as an aid in understanding and computing the

behavior of coupling apertures between bounded regions

of a wave medium.
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