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Summary—A hole in a common wall is used to provide coupling
between two resonant cavities (k=coefficient of coupling) or be-
tween two waveguides (x or b=normalized reactance or suscept-
ance) or between cavity and waveguide (p =loading power factor of
cavity).

Referring to either side of a thin common wall, the field intensity
in the center of a small hole is 1/2 what it would have been at that
location on the wall. Between two equal regions, the coupling (k, x
or b) by magnetic or electric field is expressed as 1/4 the ratio of the
effective volume of the hole over the effective volume of each region.
By duality (Booker’s principle), the effective volume (related to the
polarizability) of an aperture in a thin wall is identified with that of
an analogous thin body in a uniform field. For a resonant cavity
loaded by coupling to a waveguide, the loading power factor is
D =kx; this theorem is proved by reference to an equivalent network.

Various cases of coupling by two-dimensional and three-dimen-~
sional fields are formulated in terms of area or volume ratios, es-
pecially between pillbox resonators (rectangular, circular, or coaxial-
circular) and between rectangular waveguides with common side
walls or top and bottom walls. The effective area or volume of a
small hole in a thin conducting wall is given for various symmetrical
shapes, in a magnetic or electric field,

I. INTRODUCTION

N MICROWAVE technology, resonant cavities or
I[ waveguides may be coupled through a hole in a

common wall. The general principles of such cou-
pling are well known (see [3]-[5], [7], [12]).

The present purpose is the presentation of this sub-
ject in a unified manner which will emphasize the prin-
ciples and also will aid in understanding and computing
the coupling in a variety of situations. The presenta-
tion is quantitative to the extent permitted by some
simplifying assumptions.

While most of the subject matter is taken from diverse
sources in the literature, the basis for the unified pres-
entation seems to be new. This naturally leads to inter-
esting concepts and relationships that may not have
been apparent in the earlier publications. One theorem
that is particularly useful enables a simple computation
of the loading power factor of a resonant cavity by
coupling with a nonreflecting waveguide.

The field coupling or polarizability of any coupling
hole will be expressed in terms of an effective volume.
The coupled cavitities or waveguides will likewise be
evaluated in terms of an effective volume. Then it be-
comes possible to formulate, in terms of a volume ratio,
the coupling coefficient, the normalized reactance or
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susceptance, or the loading power factor, in any situa-
tion where the concept is applicable.

II. SymBoLs

MXKS rationalized units.

E =electric field intensity in space; voltage
gradient in resistance sheet (volts/
meter).

H =magnetic field intensity in space; current
density in resistance sheet (amperes/

meter).
17 =voltage.
I =current.

R =resistance.
G =conductance.
X =reactance.
B =susceptance.
Ry, Go=wave resistance or conductance in a
waveguide (based on voltage and power).
f=frequency.
N =wavelength.
A/ 27 =radianlength.
No=wavelength in free space.
A.=2a=cutoff wavelength in rectangular
waveguide.
a, b, c=width, height, length of bounded space.
a =radius of circular cylinder.
a, b=outer and inner radii of coaxial cylinders.
d =27 =width of aperture; diameter of circle.
r=radius of circle.
r1, ro=major and minor radii of ellipse (disc in
uniform field or hole in thin wall).
mri=area of circle,
#mr® =volume of sphere.
t =thickness of wall.
I=length of equivalent dipole (for defining
polarizability).
A4 =area.
Ay gy, 4= (see V below).
V" =volume.
17, Vm=effective volume of electric or magnetic
energy in a resonant cavity or wave-
guide, referred to the field intensity at a
point on one wall where coupling hole is
to be located.
V7. =effective volume or polarizability of thin
body in uniform field, or effective volume
of hole in thin wall (see Note).
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1 V. =polarizability of hole in thin wall (Bethe)
(see Note).

k= coefficient of coupling=ratio of mutual

impedance over mean self-impedance of

two circuits coupled together, or analo-

gous ratio for two field regions (especially

resonators).

x=X/Ry=normalized reactance in wave-
guide.

b= B/Go=normalized susceptance in wave-
guide.

p=1/Q=power factor of resonator (by
coupling to waveguide).
k=+/1—(rs/r)*=eccentricity of focii in
ellipse.
F(k), E(k) =complete elliptic integrals of first and
second kinds.
c=272=exp 1;Ine=1.
ji= \/——1 = quadrature operator.
sub-e =electric field.
sub-m =magnetic field.
sub-7 =resonator.
sub-g =waveguide.
sub-c =effective (of body in field or hole in wall).
sub-c=cutoff (f or A\).
SC =short-circuit (electric wall).
OC =open-circuit (magnetic wall).

Note: Electric or magnetic polarizability is here defined
with the dimensions of volume, as in an electrostatic or
electromagnetic system of units; in general, it should
include also the dimension of electrivity (electric per-
mittivity) or magnetivity (magnetic permeability) of
the medium.

III. ForM OF PRESENTATION

In order to emphasize the significant properties of a
coupling hole in a wall between two bounded regions,
this presentation is limited to certain well defined situa-
tions, which are outlined in Table I. The theory is based
on the limiting case of a coupling hole that is small as
compared with the coupled regions, and as compared
with the wavelength. Therefore the theory will be valid
for small values of the ratios that will indicate the
amount of coupling. Also, the coupling effects of the
electric and magnetic fields can be separately evaluated.
The wave medium and boundaries are assumed to have
perfect properties, for example, walls of perfect conduc-
tivity.

The ratios to be evaluated will be expressed as volume
ratios or, in some cases, as area ratios. The latter will
represent the volume ratios in cases of two-dimensional
fields in three-dimensional space, or the area ratios may
apply directly to the two-dimensional fields in a resist-
ance sheet.

To this end, each field region and each coupling hole
will be evaluated in terms of its effective volume or
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TABLE 1
ScoPE OF THIS PRESENTATION

Coupling between two regions bounded by conducting walls:
Two resonant cavities;
Two waveguides;
One resonant cavity and one waveguide.
Small hole, non-resonant:
Small coupling coefficient between two cavities;
Small normalized coupling reactance or susceptance between two
waveguides;
Small loading power factor of cavity by coupling to waveguide.
Two or three-dimensional fields:
Coupling by magnetic field parallel to wall;
Coupling by electric field perpendicular to wall.
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Fig. 1—Coupling coefficient in terms of volume ratio.

area with reference to the kind of field that is instru-
mental in effecting a certain amount of coupling.

Fig. 1 shows the principle of expressing the amount of
coupling in terms of a ratio of two values of effective
volume. Two resonant cavitities are separated by a
common wall, and are coupled by a hole in this wall. For
simplicity, the hole is so located that only one kind of
field is effective therein, e.g., the magnetic field. In a
manner to be described, with reference to this kind of
field, the effective volume of each cavity (V) and the
coupling hole (V.) will be defined and formulated. The
coefficient of coupling between the cavities (k), as
usually defined in circuit theory, is then expressed in
terms of the ratio of these volumes, as indicated:

I v,
k=——. (1)
1V
The factor § is introduced by a concept based on a sim-
ple rule that will be stated.

The same principle will be applied to formulating the
normalized reactance or susceptance (x or b) which may
be effective in coupling two waveguides. Then, for the
case of a resonant cavity coupled to a waveguide, a sim-
ple theorem will be presented for expressing the resulting
“loading power factor” (p) of the resonator as a ratio of
the values of effective volume.

While these principles have widest applicatiou to
bounded regions of a wave medium, some of the ideas
and relations can be presented most simply with refer-
ence to the two-dimensional field in a “resistance sheet.”
Particularly, such a sheet is most easily represented on
paper. The field configuration therein is easy to conceive
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in terms of voltage gradient (volts/meter) and current
density (amperes/meter) which are simply related by
the resistance (ohms across a square). These are reasons
why such a sheet is used in studies of analogous fields in
three dimensions. Here it will be used in the introduc-
tion of some concepts and in the proof of some theorems.
It is recognized that the simplicity of the isotropic
resistance sheet is available as a complete analogy, only
for those three-dimensional cases which satisfy several
conditions. In the region of interest, the medium must
be isotropic and homogeneous, the field under consider-
ation must be essentially a static field (not interacting
with any other field), and the boundaries and field must
be invariant in the third dimension. In this presenta-
tion, these conditions are all met with respect to the
coupling field in the region of a small two-dimensional
aperture. Furthermore, some of the principles based on
the two-dimensional field are applicable to the three-
dimensional field with corresponding restritions.

IV. PRINCIPLES OF APERTURE COUPLING
IN Two-DIMENSIONAL FIELDS

Several principles or rules are helpful in understand-
ing the behavior of coupling holes and in expressing the
amount of coupling. These will be presented here with
reference to the two-dimensional fields in bounded areas
or resistance sheet.

Fig. 2 illustrates the principle of duality. Each of two
bounded regions is a rectangle of resistance sheet with
conducting boundaries on two opposite edges and in-
sulating boundaries on the other two edges. The two
rectangles have a common edge, analogous to a shield-
ing wall, and they are coupled by being joined over a
small fraction of this edge, analogous to an aperture in
the wall.

In Fig. 2(a), there is an insulating common wall, and
the current (7) in the sheet is nominally parallel to the
wall. The voltage (V) is applied between the two con-
ducting walls. If one rectangle is excited as shown, there
is some coupling through the aperture to the other rec-
tangle. On the other hand, in Fig. 2(b), there is a con-
ducting common wall, and the current in the sheet is
nominally perpendicular to the wall.

These two cases are said to be related by “duality.”
This term denotes that one of the two orthogonal field
patterns changes from potential contours to flux con-
tours, and the other field pattern vice versa. Likewise,
the conducting boundaries change to insulating bound-
aries, and vice versa. In the resistance sheet, voltage
and current are interchanged.

If we take current to be analogous to flux, Fig. 2(a)
shows the flux nominally parallel to the common wall,
and Fig. 2(b) perpendicular. There are indicated, for
each relationship, the analogous cases of electric-field
coupling and magnetic-field coupling. Of the resulting
four cases, only two are of particular interest for a wave
medium, the two requiring a conducting wall, because
such a wall is the kind that can be realized as a shield
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SHIELDING WALL
[—APERTURE IN WALL

—%V

(a) Flux (I) paralicl to wall:
Electric coupling through aperture in insulating wall (shown);
Magnetic coupling through aperture in conducting wall
(analog).

(b) Flux (I) Perpendicular to wall:
Electric coupling through aperture in conducting wall
(shown);
Magnetic coupling through aperture in insulating wall
(analog).

Fig. 2—Aperture coupling between two rectangles of
resistance sheet; duality.

for both electric and magnetic fields. (A conducting wall
is a shield against an high-frequency magnetic field, if
the “skin-depth” is a small fraction of this thickness.)
On the other hand, the hypothetical insulating wall is
not easily realizable for a wave medium, because the
wall would be required to have much smaller electrivity
(permittivity) and much greater magnetivity (perme-
ability), both of which are not generally found in avail-
able materials.

In Fig. 2, the shapes shown have symmetry about the
indicated centerlines. In Fig. 2(a), the centerline is at
zero potential, so it may be the location of a conducting
boundary for enabling one half of the sheet to have the
same field configuration. In Fig. 2(b), the centerline is
crossed by no current, so it may be the location of an
insulating boundary.

Fig. 3 shows qualitatively the orthogonal field con-
tours in a pair of equal rectangles with aperture cou-
pling. One set of contours is shown above the centerline
and the other set below the centerline. The exciting
voltage or current is applied across the left-hand rec-
tangle, which therefore has its flux nominally parallel
or perpendicular to the common wall. The right-hand
rectangle is excited by the coupling through the aper-
ture in this wall.

For the shape illustrated in Fig. 3, the coupling coeffi-
cient (k) happens to be about 7w/64 or 0.049; the cor-
responding contour is marked for emphasis. Either the
voltage or the current is coupled in this ratio, since the
two rectangles are equal.

There is a simple “rule of one half” that will play an
essential role in this presentation. This rule, which has
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ANALOGOUS TO:
ELEGTRIC FLUX OR
MAGNETIC POTENTIAL
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Fig. 3—Field contours for aperture coupling between two rectangles.
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Fig 4—Rule of one-half field intensity in center of a small
aperture in a thin wall.

been recognized in various physical situations, will be
stated and proved with reference to Fig. 4. It applies
strictly to a symmetrical small aperture in a plane thin
wall of perfect shielding. For present purposes, the aper-
ture is symmetrical with respect to two mutually per-
pendicular axes, at least one of which is perpendicular
to the field direction. The aperture is much smaller
than its distance to the nearest boundary other than
the wall in which it is located. The rule is valid alike
for two- or three-dimensional fields.

Fig. 4 shows two regions coupled through an aperture
in a common shielding wall, in accordance with the
stated ronditions. The wall is taken to have such proper-
ties that it is invisible to a parallel field, as exemplified
by an insulating slit in a resistance sheet. In the left-
hand region, the field intensity is 41, except for the
vicinity of the aperture. In the right-hand region, the

field intensity is respectively +1, 0, —1, the intermedi-
ate case being the average of the two extreme cases. In
one extreme case, Fig. 4(a), the common wall is invisible,
so the field intensity in the aperture is +1. In the other
extreme case, Fig. 4(c), the fields cancel out in the center
of the aperture. The intermediate case, Fig. 4(b), is
simply the average of the other two cases, so the field
intensity is % in the center of the aperture. Therefore the
field intensity in the region on either side of the aperture
is represented by 1 of this field intensity in the center
of the aperture. This is here designated as the “rule of
one half.”

In Fig. 4, the field direction is parallel to the shielding
wall, and the wall is such as to be invisible to a uniform
field of this kind and direction. This is true of a resist-
ance sheet with an insulating wall and with current in
the indicated directions. However, an analogous proof
is applicable to any field component that is parallel or
perpendicular to a shielding wall of any kind. For the
usual conducting wall, the cases of most interest are the
parallel magnetic field or the perpendicular electric field,
as outlined in Fig. 2.

The classic derivation by Bethe (see [4], [3]) is ex-
pressed in terms of the “polarizability” of an aperture,
for evaluating the coupling from one side to the other.
Taking the resistance sheet as a region of two-dimen-
sional field, this concept will be presented with reference
to Fig. 3.

The resistance sheet is divided by an insulating slit
representing a thin shielding wall in which there is an
aperture of small width (d). Referring to Fig. 5(a), the
exciting current density on the left-hand side is parallel
to the wall and has a certain value (H). This value is
reduced by the “rule of one half” in the center of the
aperture (3/). Some of the field lines loop through the
aperture into the right-hand side. On that side, far
from the aperture, the field is the same as that of a small
current dipole located at the center of the aperture, as
indicated in Fig. 5(c). This equivalent dipole has a cer-
tain moment ([1).

In accordance with previous uses of the term, Bethe
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Fig. 5—Equivalent dipole moment of coupling through an aperture,
as a basis for defining its polarizability.

implicitly defined the “polarizability” of an aperture
as the quotient of the equivalent dipole moment over
the incident field intensity. In his use of electrostatic
and electromagnetic units, this quotient appeared to
have simply the dimensions of volume. In an integrated
electromagnetic system of units (exemplified by the
mks system), this quotient would include also the
relevant property of the medium (electrivity or mag-
netivity). Here, in order to retain the dimensional sim-
plicity, we redefine polarizability as the quotient of the
equivalent dipole moment over the flux density of the
field. Then it has the dimensions of area or volume in a
two- or three-dimensional field. Here the polarizability
will be related to the “effective” area or volume of an
aperture.

In the resistance sheet, as shown in Fig. 5, the polar-
izability is formulated as the quotient of the equivalent
dipole moment (I) over the current density (H), to
give the dimensions of area. For a conducting wall in a
wave medium, this is closely analogous to the coupling
through a long slot of constant width (d) excited by a
transverse magnetic field. By duality, it is analogous to
the coupling through the same slot excited by an electric
field perpendicular to the wall. These cases both give
the same area of polarizability, with respect to a two-
dimensional field.

Referring further to Fig. 5, the equivalent dipole
moment and the polarizability are formulated from
Bethe’s derivation for the two-dimensional magnetic
field across a long slot in a conducting wall. Here we
note that the polarizability is % the area of a circle in-
scribed in the aperture (4,). By the “rule of one half,”
the center of the aperture is subject to 3 the field inten-
sity on either side, so we may say that the “effective
area” for interaction would be subject to (3)? or § the
product of the field intensities. On this basis, the polar-
izability becomes equal to 1 the effective area. In this
case, the effective area (4.) is simply the inscribed cir-
cle. as indicated in Fig. 5(b). This concept is in accord

with one's intuitive notions of the interaction in the
aperture region.

The concept of polarizability was originated to evalu-
ate the effect of a body introduced into a uniform field,
such as a molecule in a dielectric or a loading conductor
in an artificial dielectric. Some cases of the latter are
directly related to coupling apertures by duality and
Booker’s principle (see [6], [10], [14]). Specifically, a
thin body in a uniform field is analogous to an aperture
in a thin wall, under certain conditions.

Fig. 6 shows qualitatively the two-dimensional field
contours of the same region with opposite boundaries on
the vertical center line. These may be regarded as a re-
sistance sheet or a two-dimensional cross section of a
three-dimensional region. The terminology will be de-
scriptive of the latter.

Fig. 6(a) shows a thin conducting strip in a uniform
field, either an electric field parallel to the plane of the
strip or a magnetic field perpendicular, these being re-
lated by duality. Fig. 6(b) shows a slot of the same width
in a thin conducting wall, with either a magnetic field
parallel to the wall or an electric field perpendicular,
these also being related by duality. In Fig. 6(a), the
field is so oriented that there is zero field in the center
of the strip. In Fig. 6(b), this result is obtained by op-
posite field directions on the opposite sides of the wall.
Then the field configurations acquire the same shape.
This relationship between Figs. 6(a) and 6(b) is a fur-
ther application of duality, but especially as presented
by Booker in his classical analogy between a conducting
strip and a slot in a conducting sheet (see [6]).

By successive steps, there will be established a quan-
titative relation between a thin body in a uniform field
and an aperture in a thin wall. In particular, they will
be shown to have the same effective area or volume, in
the terms of this presentation.

Fig. 7 shows a basis for evaluating the effective area
(or volume) of a thin body in a uniform field. The case
shown is based on Fig. 6(a), the cross section of a thin
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(a) Tnsulating wall, conducting strip: Parallel electric field or Per-
pendicular magnetic field.

s

(b) Conducting wall, insulating slot: Parallel magnetic field or Per-
pendicular electric field.

Fig., 6—Field contours of a thin body in a uniform field, and the
analogous coupling in a thin wall; duality and Booker’s principle.

CONDUCTING STRIP
(CROSS-SECTION )

CONDUGTING DISG: V, = = sphere

Fig. 7—Evaluation of effective area (or volume) of
a thin body in a uniform field.

conducting strip in an electric field. At any distance
from the strip, the perturbation from the uniform field
appears as a spreading of the potential contours. Taking
any pair of contours at the same distance {rom the strip,
the amount of spreading may be measured by the incre-
ment of the cross-sectional area included between these
contours. As this area is evaluated further from the
strip, it approaches a limiting value (4,) which is de-
fined as the “effective area.” In this case, it is found to
be equal to the circle circumscribed on the width of the
strip, as indicated (see [17], [21]).

If instead we take a thin circular disk in Fig. 7, its
“effective volume” (1) on the same basis is 4/7 times
the circumscribed sphere (see [4], [5], [17], [21]).

From Figs. 5 and 7 for two-dimensional fields, we are
prepared to compare an aperture in a thin wall with the
analogous thin body in a uniform field. We note that
they have the same effective area, as here defined. A
similar conclusion may be reached {from a consideration
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of the known formulas for three-dimensional fields, giv-
ing the same effective volume for the aperture in a thin
wall and the analogous thin body in a uniform field. In
any case, this like evaluation is enabled by the concept
of applying the “rule of one half” to the fields on both
sides of the aperture, and thereby introducing the fac-
tor § in (1).

Referring to Fig. 7, the significance of the effective
volume (V,) may be exemplified by the effect of a small
thin conducting disk introduced into the region of uni-
form electric field in an idealized parallel-plate capaci-
tor. If this region has a certain volume (1), the relative
increment of capacitance is

AC TV,

o7 (2)
In this case, the polarizability, as defined herein, is equal
to the effective volume.

While the relations stated above are all based on der-
ivations found in the literature, there is one proof that
will be given as a link between the effective volume of a
thin body and that of an aperture in a thin wall. This
proof will be based on circuit theory with the aid of the
bisection theorem (see [1], [2]).

Fig. 8 illustrates this proof relating to aperture cou-
pling. It is intended to shed further light on the concept
of effective area (or volume). It is based on a symmetric
pair of rectangles of resistance sheet and the equivalent
resistance network, as shown in Fig. 8(a). The rectangles
have in common an insulating wall, part of which is re-
moved to leave the two rectangles in contact over a
width of aperture. The upper and lower conducting walls
of each rectangle form one pair of terminals of the net-
work, Each rectangle presents at its pair of terminals a
resistance (R) if the other pair is left unconnected. The
aperture provides an apparent coupling resistance (kR)
as indicated in the equivalent network. The aperture is
assumed so small that the coupling coefficient is much
less than unity (k<1).

Fig. 8(b) shows two other network representations,
one of these being bisected for further analysis. The
objective is to formulate the coupling coefficient in
terms of the dimensions of the rectangles and their
coupling aperture.

Fig. 8(c) shows one half of the network with open
circuit {OC) at the bisection terminals. This corresponds
to one rectangle with the insulating wall completed so
there is no current diverted into the other rectangle.
Fig. 8(d) shows the same except with short circuit (SC)
at the bisection terminals. This corresponds to one rec-
tangle with a conducting wall substituted for the aper-
ture.

Since the aperture does not have terminals in the
literal sense, a rigorous equivalence in Figs. 8(c) and (d)
requires the network concept of symmetric and asym-
metric “modes,” as indicated beside the rectangle aper-
tures. These concepts are based on simultaneous excita-
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Fig. 8—Equivalent-network derivation of the coupling coefficient
between two rectangles, in terms of the effective area of the cou-
pling aperture.

tion of both sides of the symmetric network, in the same
or opposite polarities. Such a consideration establishes
the equivalence of an open circuit or a short circuit and,
respectively, an insulating or a conducting wall at the
coupling aperture,

Referring to the change from Fig. 8(c) to (d), we see
that the effect of the aperture appears in the form of a
conducting body introduced into an otherwise uniform
field, as discussed with reference to Figs. 5-7. In Fig.
8(d), the rectangle area (A =ab) includes only half the
effective area of the conducting body (3.d.=(x/8)d?).
Comparing the OC and SC conditions, the relative
change of resistance in the network (2%) is equal to that
in the rectangle (3.4./4) as indicated. This equality
establishes the 1 factor previously introduced.

This example behaves as a resistive attenuator. Its
behavior may be expressed in terms of the maximum
efficiency of coupling between generator and load, which
is

k 2 1
efficiency = (————-—-:) = — k2K 1, (3)
14 1 — k2 4

For the shape shown, the computed coupling and
efficiency are indicated, corresponding to an attenuation
of 32.2 db.
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V. Various SHAPES OF COUPLING HOLES

The preceding discussion has been directed mainly to
examples of two-dimensional fields, in which the aper-
ture has only one dimension (width) and no option as to
shape. In three-dimensional fields, there are several
shapes of coupling hole that are interesting in theory or
practice.

Fig. 9 shows several shapes of coupling holes, with
their relative values of effective volume (17,,.) for mag-
netic field parallel to the major axis. The relative values
are referred to unity for the simplest case of a circle,
and are based on equal values of the major diameter
(d=2r{). The shapes are self-explanatory, being made
of straight lines and circular arcs except for the ellipse.
Only the ellipse (of which the circle is a special case) can
easily be computed. All have been described and evalu-
ated theoretically or experimentally by Cohn (see [14]-
[16], [21]). The general properties of these shapes are
familiar and need no comment. ’

The ellipse offers a family of cases that exemplify a
range of shapes, of which some extreme cases are espe-
cially interesting and significant. They are unusual in
their simplicity of mathematical formulation. Table 11
gives the effective volume (17,) as defined here for an
elliptic disc or hole with respect to any of the three field
directions of interest. In addition to the general formula
in terms of complete elliptic integrals, the extreme cases
of a circle and a narrow ellipse are formulated in terms
of more elementary functions. In each case, the coeffi-
cient in parentheses will be recognized as the volume of
a sphere or spheroid circumscribed on the ellipse.

Referring to Table II, there are several {features
worthy of note. For the narrow ellipse, much the
greater effective volume is presented to the longitudinal
magnetic field. For the transverse magnetic and the
perpendicular electric fields, the narrow ellipse approxi-
mates a long strip or slot with a two-dimensional field, so
these two cases are related by duality and hence present
the same effective volume. For the circle, there is no
distinction between the two magnetic field orientations.
Here we note the ratio of 2:1 between magnetic and
electric polarizabilities of a circular hole which was dis-
covered and put to use by Bethe (see [4], [5]).

Most of the present discussion applies quantitatively
to the limiting case of a hole in a thin wall. In practice,
the wall usually has a thickness sufficient to reduce the
coupling by an appreciable amount. In principle, this
reduction is related to the field attenuation in a cylindri-
cal shield that is too small for wave propagation (see
[8], [9]). Fig. 10 gives some relations that are helpful
in estimating this effect. Taking a cylinder having a
cross section like the hole in size and shape, the ex-
ponential rate of attenuation along the cylinder can be
evaluated. In the short cylinder through the thick wall,
this rate gives an upper limit on the attenuation of the
coupling by the thickness of the wall. The rate is indi-
cated for several simple cases of two- and three-dimen-
sional fields.
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V1. CourLiNG BETWEEN RESONANT CAVITIES

Having developed the concept and significance of the
effective area or volume of a coupling hole, its simplest
and most interesting application is found in the coupling
between two resonant cavities, as introduced in Fig. 1.
Here the two cavities are taken to be alike, and bounded
by walls of perfect conductivity with resulting perfect
shielding. Quantitative evaluation will be based on the
assumption of a small coupling hole in a thin common
wall.

The simplest resonant cavity for this purpose is the
“square pillbox” shown in Fig. 11 (next page). This
designation implies that the third dimension (¢ =height,
not shown) may be much smaller than the diameter (a).
In any case, the field is taken to be two dimensional as
in the rectangular TM-110 mode of resonance. Incident-
ally, this requires that the coupling hole have the same
width (d) over the full height of the cavity. The two
cavities with a common side wall for the coupling hole
are coupled by magnetic field in the hole.

As one step, it is necessary to evaluate the effective
area or volume of the resonant cavity. In general terms,
the electric field is greatest in the center of the square
and the magnetic field is greatest in the middle of each
side wall. The hole is located in the middle of one side
wall, so the magnetic field intensity (H) in this location
(but before the hole is opened) is taken as a reference.
The effective area of the resonant cavity is defined as
the area (4,) which would contain the same amount of
magnetic energy if filled with uniform intensity equal to
the reference value (H). In the square cavity, this is 2
the area, as indicated. It is interesting to designate, as
shown in dotted lines, the parts of the area that contain
most of the magnetic energy. If we apply the same prin-
ciple to the electric field, taking the maximum value
(E) as a reference, its effective area (d.) is § of the
square, this energy being contained mostly in the center
area, shown in dotted lines. The areas in the corners
contain little energy of either kind.

In Fig. 11, the hole for magnetic coupling has an
effective area (4d,.) equal to the inscribed circle, as
previously shown in Figs. 5 and 7. The coupling coefh-
cient (k,) is then simply formulated as % the ratio of
the effective area of the hole over that of the cavity. This
follows the reasoning of Fig. 8 and the preceding dis-
cussions.

In all evaluations in this paper, the assumption of a
small hole limits the validity to a coupling coefficient
much less than unity. In Fig. 11, for example, a close
approximation would require a hole less than % the
diameter (d/a <%, k. <w/128=0.025); a rough approxi-
mation would be obtained for a hole less than % the
diameter (d/a <%, k,<w/32=0.10). The residual rela-
tive error is of the order of the coupling coefficient (k).

Fig. 12 shows the magnetic coupling on the same basis
for two resonant cavities of the “rectangular-pillbox”
type. Here the formulas are complicated by the refer-
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ence intensity (H) at two walls (b) being different from
the intensity at the other two walls (a).

Fig. 13 shows the magnetic coupling for two resonant
cavities of the “circular-pillbox” type. Here there is no
“common” wall in the literal sense, but this is approxi-
mated in the vicinity of a small hole. The circular TM-
010 mode of resonance is utilized. Here it is remarkable
that the effective area of magnetic energy is equal to the
area of the cavity; the small density near the center is
compensated by the excess of density in an intermediate
region just inside the rim. The effective area of the hole
likewise being a circle, the result is an extremely simple
formula for the coupling coefficient.

Fig. 14 shows the magnetic coupling for two resonant
cavitities of the “coaxial-circular-pillbox” type. For
evaluation, this is assumed much smaller than the wave-
length, so the magnetic and electric fields are substan-
tially separated in the outer and inner regions, desig-
nated as inductance (1) and capacitance (C).

In the related case of a pair of adjacent long coaxial
lines coupled by a longitudinal slot of length much
greater than its width, we can likewise express the cou-
pling coefficient that is effective over the length of the
slot. By duality, it has the same value for both magnetic
and electric fields (k,==%,), and is given by the formula
in Fig. 14. In this case, there is no assumption of
resonance, nor is it ruled out.

Going to three-dimensional fields, the simplest case is
the coupling of two cubic resonant cavities by a. circular
hole, as shown in Fig. 15. The resonance is in the pill-
box mode, rectangular TM-110, which has a two-dimen-
sional field. However, the coupling hole is circular, which
departs from the two-dimensional field.

Fig. 15(a) is an extension of Fig. 11, the magnetic-
coupling hole being changed to a circle. Using effective
volume instead of area for both the cavity and the hole
(Vmy Vine), the coupling coefficient (k,) is simply formu-
lated.

Fig. 15(b) has the cavity field reoriented for electric
coupling, the hole being located at the maximum elec-
tric field intensity E. From Fig. 11 and Table II, it is
found that the effective volume of the cavity and that
of the hole are both reduced to one half, so the coupling
coefficient remains the same. This is a remarkable co-
incidence, which might be useful in the design of such
cavities for simultaneous utilization of different orthog-
onal modes at the same frequency (or nearby frequen-
cies).

Fig. 16 is changed from Fig. 15(a) in the same manner
as Fig. 12 from Fig. 11; two rectangular resonant cavi-
ties are coupled by a circular hole.

These examples of coupling holes between various
types of resonant cavitities have been chosen to illus-
trate some principles and to give some formulas for
simple cases that may be approximated in practice.
They can be extended to other cases in terms of the
values of effective area or volume for any particular
cavities and coupling hole.
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Fig. 14—Coaxial-circular-pillbox resonant cavities.
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VII. CouprLING BETWEEN WAVEGUIDES

Two waveguides may be coupled in various ways
through a hole in a common wall. In order to apply the
principles presented here, we must evaluate the effective
volume of the waveguide for comparison with that of
the hole. Unlike the resonant cavity, the waveguide does
not have a limited region in which to evaluate the effec-
tive volume for this purpose. Therefore, we shall arbi-
trarily define an effective volume such that it will fit
into a certain formula.
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A simple case of coupling between two rectangular
waveguides is shown in Fig. 17 (next page). It has a
circular hole in the common end wall of the two wave-
guides. Alternatively, it may be regarded as an iris in-
serted in a continuous waveguide. The amount of inter-
coupling may be expressed in terms of the “normalized
reactance” (x=X/R,) in shunt across the waveguide.
Reactance is chosen rather than susceptance, because it
is zero for a complete shield with no hole and increases
with coupling between the two waveguides. The normal
mode in this waveguide is the rectangular TE-10 mode;
on reflection at the end wall, it develops a maximum
magnetic field (H) at the end wall midway between the
side walls (5). This value is used as the reference, be-
cause the hole is to be opened at this location.

Corresponding to (1) for the coupling coefficient be-
tween resonant cavities, it is desired to express the
normalized reactance in the same form,

17, "
TRy

Here the effective volume of the waveguide (17) remains
to be defined.

In Fig. 17, the normalized reactance is known in terms
of dimensions (see [7], [12]), as is the effective volume
of the circular hole for magnetic coupling (V,.), so the
effective volume of the waveguide (V,) can be formu-
lated as shown. It is interesting, and presumably signif-
icant, to associate this computed volume with some re-
gion in the waveguide; this is done in dotted lines on the
diagram. The length of this region (1/27)A, is recognized
as one radianlength in the waveguide.

There are some purposes to be served by evaluating
the effective volume in the waveguide. It can be ex-
pressed and remembered in simple dimensions inde-
pendent of the coupling hole, and subsequently can be
used in a ratio with any shape of coupling hole. It
varies with guide wavelength A, and hence with fre-
quency, causing a corresponding inverse variation in
the normalized reactance, as indicated in the formulas
in Fig. 17. It may be helpful in appreciating the signif-
icance of the fields in space as determining the amount
of coupling through the hole.

Fig. 18 shows the circuit representation of the two
ways in which two waveguides may be coupled by
normalized reactance (x). Fig. 18(a) shows the end-wall
coupling between two colinear waveguides, as just de-
scribed, while Fig. 18(b) shows the top-wall coupling
between two parallel waveguides. In the latter form, the
common wall is the top wall of one rectangular guide
and the bottom wall of the other. In both forms, the
normalized reactance and the effective volume have the
same values. In Fig. 18(b), the mutual reactance is
negative because the representation is made in terms of
coupling between the upper conductors of both circuits,
whereas the waveguide coupling is between the upper
conductor of one guide and the lower conductor of the
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other. The self-reactance shown in each circuit repre-
sents the increment caused by opening the hole in the
wall.

Fig. 19 shows the circuit representation of the two
ways in which two parallel waveguides may be coupled
by normalized susceptance (b). Fig. 19(a) shows side-wall
magnetic coupling while Fig. 19(b) shows top-wall elec-
tric coupling. By the usual methods, the normalized
susceptance (b,, b.) is evaluated and this enables formu-
lation of the effective volume (V,, V.) for these con-
figurations as was done in Fig. 17.

In Fig. 19, the circuit representations indicate the
magnitude of the normalized susceptance by the symbol
(b). The positive prefix () indicates positive capacitance
or negative inductance, whereas the negative prefix (—j)
indicates negative capacitance or positive inductance.
The self-susceptance shown in each circuit represents
the increment caused by opening the hole. [t is negative
inductance (jb) in Fig. 19(a) or negative capacitance
(—3jb) in Fig. 19(b). In Fig. 19(a), the coupling sus-
ceptance is positive inductance (—7b). In Fig. 19(b), the
coupling susceptance is negative capacitance (—jb) be-
cause the representation is made in terms of coupling
between the upper conductors of both circuits, whereas
the waveguide coupling is between the upper conductor
of one guide and the lower conductor ol the other.

Figs. 18(b) and 19(b) show magnetic and electric top-
wall coupling that would occur simultaneously in differ-
ent amounts. The ratio of these couplings would then
be significant, as determined by the relative effective
volume of the hole and waveguides with respect to these
fields.

xm le) V@

be - Vec Vm

_ ZG‘E)? N = (R

g

In the usual operating range of the waveguides, this
ratio exceeds unity, so the magnetic coupling is domi-
nant. It is noted that these two couplings give a direc-
tional coupling from a wave in one guide to waves in
both directions in the other guide, in the manuner that
is well known.

In further reference to Figs. 18(b) and 19(b), top-
wall coupling is generally mixed magnetic and electric
coupling, unless one kind is intentionally selected
against the other. For example, a narrow ellipse favors
coupling by longitudinal magnetic field, as seen in
Table 11, so a narrow slot is commonly used to sub-
ordinate electric coupling.

Among the various couplings in Figs. 18 and 19, only
one has zero slope in any part of the usual operating
frequency range. Fig. 19(b) has minimum susceptance
at a certain frequency (f/fo=+/2); the reason is the
tendency of this coupling to increase toward higher fre-
quency and also toward the cutoff frequency. This elec-
tric coupling alone cannot be obtained by a simple
coupling hole, but it could be obtained by a probe
through a small hole designed to subordinate magnetic
coupling.
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VIII. CouprLiNG BETWEEN RESONANT
CAVITY AND WAVEGUIDE

The evaluation of the coupling between two like cavi-
ties or waveguides is simplified by symmetry. This sym-
metry is lost in the coupling between a resonant cavity
and a waveguide. A theorem has been discovered which
enables a simple evaluation in this unsymmetric case
from a knowledge of the two symmetrical cases. This
theorem will be presented and proved with reference to
Figs. 20 and 21.

The coupling between a resonant cavity and a wave-
guide is usually expressed by the “loading power factor”
(p=1/Q) of the resonator loading by its coupling with
one end of a waveguide. The latter is assumed to have
a nonreflecting termination at its other end.

Fig. 20 shows the circuit representation of a resonator
coupled with a nonreflecting waveguide by a relatively
small value of coupling reactance. The latter may be
expressed in either of two ways. From the viewpoint of
the coefficient of coupling between two like resonators,
it is expressed in one form (kX). From the viewpoint of
the normalized reactance between two like waveguides,
it is expressed in another form (xR,). The resistance
(R) which is coupled into the resonator is then ex-
pressed in two ways, and the ratio mean of the two
expressions comes out in simple form. This yields an
extremely simple expression for the loading power fac-
tor:

p = kx. (6)

The significance of this relation will be described, and
the loading power factor will be evaluated in terms of
volume ratios.

Fig. 21(a) shows a resonator of a certain effective vol-
ume (V,) coupled with a waveguide of a certain effec-
tive volume (V,) through a hole in the end wall, having
a certain effective volume (V). Each effective volume
is evaluated with reference to the same kind and orien-
tation of field in the vicinity of the hole, in the manner
here presented.

The resonator and hole of Fig. 21(a) can be imaged to
form two like resonators coupled by the same hole, as
shown in Fig. 21(b). This symmetric arrangement is
used for defining and evaluating a coupling coeffi-
cient (k).

The waveguide and hole of Fig. 21(a) can be imaged
to form two like waveguides coupled by the same hole,
as shown in Fig. 21(c). This symmetric arrangement is
used for defining and evaluating a normalized react-
ance (x).

With the coupling coefficient and the normalized re-
actance so defined, their product becomes equal to the
loading power factor in Fig. 21(a). It may be formulated
in terms of the corresponding volume ratios, as indi-
cated.

Fig. 22 shows an example of the loading power factor
by coupling between a resonant cavity and a waveguide.
The dimensions are chosen for a convenient relation be-
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tween a square cavity and a waveguide in order to
simplify the formula and to emphasize the more inter-
esting relations.

IX. ConcLusION

A basis has been presented for evaluating the cou-
pling through an aperture in terms of ratios of effective
area or volumme of the aperture relative to the adjoining
bounded regions. The measure of coupling is the cou-
pling coefficient between two resonant cavities, the nor-
malized reactance or susceptance between two wave-
guides, or the loading power factor of coupling between
a cavity and a waveguide. A simple theorem is presented
for evaluating the unsymmetric last form from the view-
point of the two symmetric forms.

In each case, there is a significant “power law” that
shows the proportionality between the index of coupling
and the diameter of the coupling hole. In the symmetric
cases, the coupling (k or x) shows area or square-law
proportionality for a two-dimensional field at the aper-
ture, and shows volume or cube-law proportionality for
a three-dimensional field at the aperture. In the unsym-
metric case, the loading power factor is proportional to
twice as high a power, namely, (area)? or fourth power,
and (volume)? or sixth power.

The concepts and formulas presented here are in-
tended as an aid in understanding and computing the
behavior of coupling apertures between bounded regions
of a wave medium.
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